(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
m(x, y) → if(gt(x, y), x, y)
if(true, x, y) → s(m(p(x), y))
if(false, x, y) → 0
gt(0, y) → false
gt(s(x), 0) → true
gt(s(x), s(y)) → gt(x, y)
p(0) → 0
p(s(x)) → x
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
m(z0, z1) → if(gt(z0, z1), z0, z1)
if(true, z0, z1) → s(m(p(z0), z1))
if(false, z0, z1) → 0
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
M(z0, z1) → c(IF(gt(z0, z1), z0, z1), GT(z0, z1))
IF(true, z0, z1) → c1(M(p(z0), z1), P(z0))
GT(s(z0), s(z1)) → c5(GT(z0, z1))
S tuples:
M(z0, z1) → c(IF(gt(z0, z1), z0, z1), GT(z0, z1))
IF(true, z0, z1) → c1(M(p(z0), z1), P(z0))
GT(s(z0), s(z1)) → c5(GT(z0, z1))
K tuples:none
Defined Rule Symbols:
m, if, gt, p
Defined Pair Symbols:
M, IF, GT
Compound Symbols:
c, c1, c5
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
M(
z0,
z1) →
c(
IF(
gt(
z0,
z1),
z0,
z1),
GT(
z0,
z1)) by
M(0, z0) → c(IF(false, 0, z0), GT(0, z0))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
M(x0, x1) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
m(z0, z1) → if(gt(z0, z1), z0, z1)
if(true, z0, z1) → s(m(p(z0), z1))
if(false, z0, z1) → 0
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
IF(true, z0, z1) → c1(M(p(z0), z1), P(z0))
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(0, z0) → c(IF(false, 0, z0), GT(0, z0))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
M(x0, x1) → c
S tuples:
IF(true, z0, z1) → c1(M(p(z0), z1), P(z0))
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(0, z0) → c(IF(false, 0, z0), GT(0, z0))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
M(x0, x1) → c
K tuples:none
Defined Rule Symbols:
m, if, gt, p
Defined Pair Symbols:
IF, GT, M
Compound Symbols:
c1, c5, c, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
M(0, z0) → c(IF(false, 0, z0), GT(0, z0))
M(x0, x1) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
m(z0, z1) → if(gt(z0, z1), z0, z1)
if(true, z0, z1) → s(m(p(z0), z1))
if(false, z0, z1) → 0
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
IF(true, z0, z1) → c1(M(p(z0), z1), P(z0))
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
S tuples:
IF(true, z0, z1) → c1(M(p(z0), z1), P(z0))
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
m, if, gt, p
Defined Pair Symbols:
IF, GT, M
Compound Symbols:
c1, c5, c
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
z0,
z1) →
c1(
M(
p(
z0),
z1),
P(
z0)) by
IF(true, 0, x1) → c1(M(0, x1), P(0))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
IF(true, x0, x1) → c1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
m(z0, z1) → if(gt(z0, z1), z0, z1)
if(true, z0, z1) → s(m(p(z0), z1))
if(false, z0, z1) → 0
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, 0, x1) → c1(M(0, x1), P(0))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
IF(true, x0, x1) → c1
S tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, 0, x1) → c1(M(0, x1), P(0))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
IF(true, x0, x1) → c1
K tuples:none
Defined Rule Symbols:
m, if, gt, p
Defined Pair Symbols:
GT, M, IF
Compound Symbols:
c5, c, c1, c1
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
IF(true, x0, x1) → c1
IF(true, 0, x1) → c1(M(0, x1), P(0))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
m(z0, z1) → if(gt(z0, z1), z0, z1)
if(true, z0, z1) → s(m(p(z0), z1))
if(false, z0, z1) → 0
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
S tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
K tuples:none
Defined Rule Symbols:
m, if, gt, p
Defined Pair Symbols:
GT, M, IF
Compound Symbols:
c5, c, c1
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
We considered the (Usable) Rules:
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
And the Tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(GT(x1, x2)) = 0
POL(IF(x1, x2, x3)) = [2]x2
POL(M(x1, x2)) = [2]x1
POL(P(x1)) = 0
POL(c(x1, x2)) = x1 + x2
POL(c1(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(false) = [2]
POL(gt(x1, x2)) = [5]x1
POL(s(x1)) = [4] + x1
POL(true) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
m(z0, z1) → if(gt(z0, z1), z0, z1)
if(true, z0, z1) → s(m(p(z0), z1))
if(false, z0, z1) → 0
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
S tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
K tuples:
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
Defined Rule Symbols:
m, if, gt, p
Defined Pair Symbols:
GT, M, IF
Compound Symbols:
c5, c, c1
(13) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
m(z0, z1) → if(gt(z0, z1), z0, z1)
if(true, z0, z1) → s(m(p(z0), z1))
if(false, z0, z1) → 0
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
S tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
K tuples:
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
Defined Rule Symbols:
m, if, gt, p
Defined Pair Symbols:
GT, M, IF
Compound Symbols:
c5, c, c1
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GT(s(z0), s(z1)) → c5(GT(z0, z1))
We considered the (Usable) Rules:
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
And the Tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(GT(x1, x2)) = [2]x1
POL(IF(x1, x2, x3)) = [2]x22
POL(M(x1, x2)) = [2] + [2]x1 + [2]x12
POL(P(x1)) = 0
POL(c(x1, x2)) = x1 + x2
POL(c1(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(false) = 0
POL(gt(x1, x2)) = 0
POL(s(x1)) = [1] + x1
POL(true) = 0
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
m(z0, z1) → if(gt(z0, z1), z0, z1)
if(true, z0, z1) → s(m(p(z0), z1))
if(false, z0, z1) → 0
gt(0, z0) → false
gt(s(z0), 0) → true
gt(s(z0), s(z1)) → gt(z0, z1)
p(0) → 0
p(s(z0)) → z0
Tuples:
GT(s(z0), s(z1)) → c5(GT(z0, z1))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
S tuples:none
K tuples:
IF(true, s(z0), x1) → c1(M(z0, x1), P(s(z0)))
M(s(z0), 0) → c(IF(true, s(z0), 0), GT(s(z0), 0))
M(s(z0), s(z1)) → c(IF(gt(z0, z1), s(z0), s(z1)), GT(s(z0), s(z1)))
GT(s(z0), s(z1)) → c5(GT(z0, z1))
Defined Rule Symbols:
m, if, gt, p
Defined Pair Symbols:
GT, M, IF
Compound Symbols:
c5, c, c1
(17) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(18) BOUNDS(O(1), O(1))